Differences in coordination chemistry of alkyne and phosphaalkyne metal carbonyl complexes. Syntheses, crystal and molecular structures of $[Mo_2(CO)_4(\eta^5-C_5H_5)_2(Bu^tCP)Fe(CO)_4]$ and $[Mo_2(CO)_4(\eta^5-C_5H_5)_2(Bu^tCP)W(CO)_5]$

Peter B. Hitchcock, Mohamed F. Meidine and John F. Nixon*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BN1 9QJ, Sussex (Great Britain)

(Received April 8th, 1987)

Abstract

Whereas tetrahedral alkyne complexes of the type [MM'(RCCR)], $(M = Ni(\eta^5 - C_5H_5)$, $M' = Ni(\eta^5 - C_5H_5)$; $Co(CO)_3$; $Mo(CO)_2(\eta^5 - C_5H_5)$) react with $[Fe_2(CO)_9]$ to give cluster-expanded square pyramidal trimetallic complexes of the type $(MM'Fe(CO)_3(RCCR)]$, the tetrahedral phosphaalkyne complex $[Mo_2(CO)_4(\eta^5 - C_5H_5)_2Bu^tCP]$ reacts with $[Fe_2(CO)_9]$ or $[W(CO)_5THF]$ to give $[Mo_2(CO)_4(\eta^5 - C_5H_5)_2(Bu^tCP)Fe(CO)_4]$ and $[Mo_2(CO)_4(\eta^5 - C_5H_5)_2(Bu^tCP)Fe(CO)_4]$ and $[Mo_2(CO)_4(\eta^5 - C_5H_5)_2(Bu^tCP)W(CO)_5]$, respectively, in which the original tetrahedral cluster is intact. Structural features of these complexes and related alkyne and P_2 compounds are discussed.

Introduction

The coordination chemistry of compounds containing phosphorus-carbon multiple bonds is developing rapidly [1-6]. In a series of papers [7-13] we have drawn attention to similarities in the ligating behaviour of phosphaalkynes, RC=P, and alkynes. Here we discuss some differences in their ligating behaviour.

Results and discussion

Recently McGlinchey and Jaouen and their coworkers [14] have described an attractive approach to synthesis of transition metal clusters involving different metals in which a tetrahedral bimetallic alkyne complex undergoes cluster expansion to a square based pyramidal complex.

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

Scheme 1

Thus treatment of a variety of alkyne complexes of the type $[MNi(\eta^5-C_5-H_5)(RCCR')]$, $(M = Ni(\eta^5-C_5H_5); Co(CO)_3; Mo(\eta^5-C_5H_5)(CO)_2)$ with $[Fe_2(CO)_9]$ readily affords trimetallic compounds of the general type $[MNi(\eta^5-C_5H_5)Fe(CO)_3(RCCR')]$ (1-6) (see Scheme 1) in which an $[Fe(CO)_3]$ unit has been incorporated into the original cluster.

These reactions can be regarded as involving addition of a metal ligand fragment containing 2 skeletal electrons in three frontier orbitals [15], and therefore involve a change from a *nido* trigonal bipyramidal (tetrahedral) structure to a *nido*-oc-tahedron (square based pyramid).

We and others [11,16] previously described the synthesis of the dinuclear phosphaalkyne compound $[Mo_2(\eta^5-C_5H_5)_2(CO)_4(Bu^tCP)]$ (7), by addition of Bu^tCP across the molybdenum molybdenum triple bond of $[Mo_2(\eta^5-C_5H_5)_2(CO)_4]$.

This reaction can be extended to the synthesis of the mixed metal phosphaalkyne complex $[MoW(\eta^5-C_5H_5)_2(CO)_4(Bu^tCP)]$ [17]. Treatment of 7 with $[Fe_2(CO)_9]$ under mild conditions does not give rise to the expected cluster expansion observed for the corresponding alkyne complex, but instead 7 acts as a 'phosphane' ligand and coordinates an $[Fe(CO)_4]$ fragment via the phosphorus lone pair to form $[Mo_2(\eta^5-C_5H_5)_2(CO)_4(Bu^tCP)Fe(CO)_4]$ (8), in which the original tetrahedral cluster remains intact. Interestingly complex 8, which was characterised by elemental analysis and its structure confirmed by a single crystal X-ray study (vide infra), showed no further reactivity towards $[Fe_2(CO)_9]$. Similarly 7 reacts smoothly at room temperature with $[W(CO)_5(THF)]$ to form $[Mo_2(\eta^5-C_5H_5)_2(CO)_4-(Bu^tCP)W(CO)_5]$ (9), briefly reported previously [18], whose structure has now been confirmed by single crystal X-ray diffraction study (vide infra).

Structural aspects

The molecular structures of 8 and 9 are shown in Fig. 1 and Fig. 2, respectively, with the appropriate atomic numbering schemes. The bond distances and bond angles of complex 8 are listed in Table 2, and those of 9 in Table 4, respectively. Both complexes 8 and 9 show the basic tetrahedrane structure, consisting of two molybdenum atoms, carbon, and phosphorus, with this structural unit linked via phosphorus to Fe and W, respectively.

The IR spectra of **8** and **9** in the carbonyl stretching region show bands between 2075 and 1910 cm⁻¹ indicative of only terminal carbonyl ligands. The single crystal X-ray structural data reveal no evidence of any semi-bridging behaviour, whereas such bonding is present in the structurally related alkyne complexes of the type $[Mo_2(CO)_4(\eta^5-C_5H_5)_2(RC_2R)]$ (R = H, Et, Ph) [22].

Coordination of 7 to $[Fe(CO)_4]$ and $[W(CO)_5]$ fragments leads to significant ³¹P chemical shift changes. For 8 the resonance appears 63 ppm downfield from that for 7, whereas for 9 the coordination shift is 17 ppm upfield. In the latter complex ¹J(PW) is 229 Hz, which is in the range expected for phosphane complexes of the type $[W(CO)_5(PR_3)]$ [24], in spite of the very small MoPC bond angles (ca. 60°). A

Fig. 1. Molecular structure of $[Mo_2(\eta^5-C_5H_5)_2(CO)_4(Bu^1CP)Fe(CO)_4]$ (8).

similar value for ${}^{1}J(PW)$ was observed by Seyferth et al. for $[Co_{2}(CO)_{6}(PhCP)W(CO)_{5}]$ [25], which was synthesised from PhCCl₂PCl₂.

Table 5 lists selected bond lengths for the structurally related complexes 7 [16], 8 and 9, and $[Mo_2(CO)_4(\eta^5-C_5H_5)_2(Bu^1CP)Os_3(CO)_{11}]$ (10) [19], $[Mo_2(CO)_4(\eta^5-C_5H_5)_2(Bu^1CP)Os_3(CO)_{11}]$

Fig. 2. Molecular structure of $[Mo_2(\eta^5-C_5H_5)_2(CO)_4(Bu^{\dagger}CP)W(CO)_5]$ (9).

	x	у	Ζ		х	У	Ζ
Mo(1)	4029.1(1)	1019.9(4)	3232.6(2)	C(6)	3566(2)	- 386(5)	3012(4)
Mo(2)	3389.1(1)	2779.1(4)	3728.1(3)	C(7)	3874(2)	3669(6)	4562(3)
Fe	4202.9(2)	5178.0(7)	2444.2(4)	C(8)	3195(2)	4651(6)	3378(3)
P	3890.7(4)	3356.2(13)	2873.5(7)	C(9)	3458(1)	2320(5)	2438(3)
O(1)	4570(2)	3275(5)	1452(4)	C(10)	3143(2)	2248(5)	1528(3)
O(2)	4708(2)	5876(6)	4202(3)	C(11)	2952(2)	819(6)	1319(4)
O(3)	4584(2)	7443(4)	1765(3)	C(12)	2770(2)	3242(7)	1481(4)
O(4)	3363(1)	6381(5)	1649(3)	C(13)	3354(2)	2659(6)	831(3)
O(5)	4141(2)	245(5)	1438(3)	C(14)	4369(2)	- 356(7)	4397(4)
O(6)	3323(1)	- 1243(4)	2920(3)	C(15)	4586(2)	- 449(6)	3752(4)
O(7)	4142(1)	4226(5)	5063(3)	C(16)	4765(2)	819(6)	3664(4)
O(8)	3073(1)	5735(4)	3237(3)	C(17)	4665(2)	1680(6)	4255(4)
C(1)	4432(2)	4010(6)	1849(4)	C(18)	4424(2)	978(6)	4704(3)
C(2)	4513(2)	5557(6)	3531(4)	C(19)	2824(2)	1192(7)	3613(4)
C(3)	4436(2)	6551(6)	2032(3)	C(20)	3163(2)	814(6)	4330(4)
C(4)	3687(2)	5899(6)	1980(4)	C(21)	3229(2)	1879(6)	4934(3)
C(5)	4083(2)	589(6)	2071(4)	C(22)	2935(2)	2915(6)	4586(4)
				C(23)	2682(2)	2473(7)	3762(4)

Fractional atomic coordinates $(\times 10^4)$ with estimated standard deviations in parentheses of **8**

 $C_5H_5)_2P_2$] (11) [20], and $[Mo_2(CO)_4(\eta^5-C_5H_5)_2(RC_2R)]$ (12) [22], all of which are based on the tetrahedrane type structure.

Inspection of the data indicates the following structural features: (a) the P-C bonds in 7, 8 and 9, although formally single bonds have lengths in the range normally found for P=C double bonds, whereas the P-C bond in complex 10 is much longer, and its length is comparable with the P-C single bond lengths in phosphanes; (b) the Mo-Mo bond lengths in $7 \rightarrow 12$ lie in the range 2.95-3.02 Å, intermediate between the Mo-Mo single bond length of 3.235(1) Å [23] and double bond length of (2.618(1) Å) [21]; (c) in complexes 7-11, the Mo(1)-P and Mo(2)-P bond lengths are significantly different; and (d) only the alkyne complexes show evidence of semibridging carbonyl behaviour.

Variable temperature NMR studies in solution and solid state studies on complex 7 and $[MoW(CO)_4(\eta^5-C_5H_5)_2(Bu^TCP)]$ will be the subject of a future paper.

Experimental

Table 1

Standard Schlenk techniques were used throughout. Solvents were dried and distilled prior to use. ¹H and ³¹P NMR spectra were recorded with a Bruker WP80 Multinuclear Fourier transform spectrometer. The ¹H and ³¹P chemical shift data are quoted relative to internal SiMe₄ and external (MeO)₃P, respectively. Infrared spectra were recorded with a Perkin–Elmer 1430 spectrometer. Elemental analyses were carried out by Ms. A.G. Olney of the School of Chemistry and Molecular Sciences in the University of Sussex.

 $[Mo_2(CO)_4(\eta^5-C_5H_5)_2(Bu^tCP)]$ (7) was prepared as described in ref. 11.

Preparation of $[Mo_2(CO)_4(\eta^5-C_5H_5)_2(Bu^tCP)Fe(CO)_4]$ (8)

A suspension of $Fe_2(CO)_9$ (0.365 g, 1 mmol) in toluene (5 cm³) was treated with

Table 2	
Intramolecular distances (Å) and angles ($^\circ$) with	estimated standard deviations in parentheses for 8

(a) Bonds			4.003.0
Mo(1)-P	2.385(1)	$M_0(1) - C(5)$	1.982(6)
Mo(1)-C(6)	2.000(6)	Mo(1) - C(9)	2.322(4)
Mo(1)-C(14)	2.330(6)	Mo(1)-C(15)	2.283(6)
Mo(1) - C(16)	2.301(5)	Mo(1)-C(17)	2.345(5)
Mo(1) - C(18)	2.365(5)	Mo(2)-P	2.479(1)
Mo(2)C(7)	1.967(5)	Mo(2)-C(8)	1.979(6)
Mo(2)–C(9)	2.206(5)	Mo(2) - C(19)	2.375(6)
Mo(2)-C(20)	2.374(7)	Mo(2)-C(21)	2.329(6)
Mo(2)–C(22)	2.294(8)	Mo(2)–C(23)	2.330(7)
Fe-P	2.263(1)	Fe-C(1)	1.789(7)
Fe-C(2)	1.802(5)	FeC(3)	1.769(6)
Fe-C(4)	1.778(6)	P-C(9)	1.719(5)
O(1) - C(1)	1.140(9)	O(2) - C(2)	1.137(7)
O(3) - C(3)	1.142(8)	O(4) - C(4)	1.142(7)
O(5) - C(5)	1.143(8)	O(6) - C(6)	1.134(7)
O(7) - C(7)	1.148(6)	O(8)-C(8)	1.139(7)
C(9) - C(10)	1.540(6)	C(10) - C(11)	1.536(8)
C(10) - C(12)	1 540(8)	C(10) = C(13)	1.529(8)
C(14) = C(15)	1.418(10)	C(14) - C(18)	1.398(9)
C(15) = C(16)	1 401(9)	C(16) = C(17)	1.383(9)
C(17) = C(18)	1 392(9)	C(19) = C(20)	1.406(8)
C(19) = C(23)	1.387(10)	C(20) = C(21)	1 408(9)
C(21) = C(22)	1.404(9)	C(22) = C(23)	1 473(8)
M_0 Cenl	2.00	Mo Cen?	2 (11
	2.00	Witte Centa	and the a
(b) Angles			
P-Mo(1)-C(5)	92.1(2)	P-Mo(1)-C(6)	123.0(2)
P-Mo(1)-C(9)	42.8(1)	P-Mo(1)-Cen1	118.5
C(5)-Mo(1)-C(6)	86.8(2)	C(5)-Mo(1)-C(9)	82.1(2)
C(5)-Mo(1)-Cen1	111.6	C(6) - Mo(1) - C(9)	80.8(2)
C(6)-Mo(1)-Cen1	114.6	C(9)-Mo-Cen1	159.1
P-Mo(2)-C(7)	75.9(2)	P-Mo(2)-C(8)	80.3(2)
P-Mo(2)-C(9)	42.6(1)	P-Mo(2)-Cen2	164.92
C(7) - Mo(2) - C(8)	84.8(2)	C(7) - Mo(2) - C(9)	117.8(2)
C(7)-Mo(2)-Cen2	114.9	C(8) - Mo(2) - C(9)	91.6(2)
C(8)-Mo(2)-Cen2	110.1	C(9)-Mo(2)-Cen2	124.2
P-Fe-C(1)	86.8(2)	P-Fe-C(2)	92.3(2)
P-Fe-C(3)	175.8(2)	P-Fe-C(4)	89.8(2)
C(1) - Fe - C(2)	117.1(3)	C(1) = Fe = C(3)	90.1(3)
C(1) - Fe - C(4)	120.9(3)	C(2) = Fe = C(3)	91 7(3)
C(2) = Fe = C(4)	122.0(3)	C(3) - Fe - C(4)	89 3(3)
$M_0(1) = P = M_0(2)$	75 58(4)	$M_0(1)$ P Ee	140.35(6)
$M_0(1) = P - M_0(2)$	66.6(2)	Mo(2) P Fe	140.55(6)
$M_0(2) = P_0(0)$	60.2(2)	$E_{2} = P_{1} C(0)$	126.04(0)
$F_{0}(2) = 1 - C(3)$	178 2(5)	$F_{c-1} = C(3)$	175 9/25
$Fe_{-}C(3) = O(3)$	178.5(5)	$F_{e} = C(2) = O(2)$	17.5.6(0)
$M_{0}(1) = C(5) = O(5)$	1735(2)	$\frac{1}{1} = O(4) = O(4)$ $M_{0}(1) = O(6) = O(6)$	175.0(0)
$M_{0}(2) = C(2) - O(3)$	175.5(5)	$M_{0}(1) = C(0) = O(0)$	173.0(3)
$M_0(2) = C(7) = O(7)$ $M_0(1) = C(0) = M_0(2)$	1/0.3(3)	MO(2) = U(8) = U(8) Mo(1) = C(0) = D	174.4(3)
$M_{0}(1) = C(2) = MO(2)$	84.5(1) 125.7(2)	MO(1) = C(9) = P $M_{2}(2) = C(0) = P$	70.0(1)
$M_{2}(1) = C(9) = C(10)$	133.7(3)	MO(2) = U(9) = P	17.2(2)
MO(2) = C(9) = C(10)	134.2(4)	P = C(9) = C(10)	1.51.7(4)
C(9) = C(10) = C(11)	111.8(4)	C(9) = C(10) = C(12)	108.6(4)
C(9) = C(10) = C(13)	112.2(4)	C(11) - C(10) - C(12)	108.1(4)
C(11) - C(10) - C(13)	108.4(5)	C(12) - C(10) - C(13)	107.5(4)

342

(b) Angles			
C(15)-C(14)-C(18)	106.3(6)	C(14)-C(15)-C(16)	108.9(6)
C(15)-C(16)-C(17)	107.0(6)	C(16)-C(17)-C(18)	109.4(5)
C(14)-C(18)-C(17)	108.4(6)	C(20)-C(19)-C(23)	108.6(5)
C(19)-C(20)-C(21)	107.9(5)	C(20)-C(21)-C(22)	108.0(5)
C(21)-C(22)-C(23)	107.5(5)	C(19)-C(23)-C(22)	108.0(5)

7 (0.535 g, 1 mmol) in toluene (5 cm³). The mixture was stirred at room temperature for 24 h. The resulting deep red solution was filtered and the volatiles removed in vacuo. Crystallisation of the residue from toluene/hexane (10/1) at -40 °C yielded wine-red, air-stable hexagonal crystals of **8** * (0.55 g, 78%). Found C, 39.58; H, 2.84.

Fractional atomic coordinates $(\times 10^4)$ with estimated standard deviations in parentheses for 9

	x	у	z		x	<i>y</i>	z
W	1695.0(6)	2245.5(10)	703.8(5)	C(7)	3560(16)	1554(23)	2575(13)
Mo(1)	1889(1)	-1875(2)	1832(1)	C(8)	1853(16)	-2326(23)	683(14)
Mo(2)	3122(1)	-155(2)	2825(1)	C(9)	2778(15)	- 3290(23)	2091(14)
Р	2288(4)	299(6)	1519(3)	C(10)	3152(13)	- 793(22)	1583(11)
O(1)	- 162(12)	1036(22)	703(11)	C(11)	3904(14)	- 958(32)	1084(13)
O(2)	1839(13)	748(21)	- 887(10)	C(12)	3603(16)	- 577(28)	239(13)
O(3)	882(13)	4682(17)	- 252(11)	C(13)	4672(13)	- 108(29)	1397(13)
O(4)	3600(14)	3346(25)	641(12)	C(14)	4253(19)	-2414(25)	1085(15)
O(5)	1529(14)	3894(16)	2238(9)	C(15)	4499(16)	- 544(31)	3539(12)
O(6)	1508(11)	1362(18)	3212(10)	C(16)	4121(18)	-1740(27)	3320(14)
O(7)	3858(12)	2573(17)	2468(11)	C(17)	3413(18)	-1939(28)	3714(13)
O(8)	1776(12)	- 2654(19)	46(11)	C(18)	3284(16)	- 813(25)	4135(13)
O(9)	3211(12)	- 4173(17)	2241(12)	C(19)	3977(17)	57(30)	4022(12)
C(1)	550(17)	1585(27)	740(13)	C(20)	558(15)	-1150(27)	2214(16)
C(2)	1804(16)	1246(21)	-307(12)	C(21)	977(14)	-1742(21)	2837(14)
C(3)	1161(16)	3661(27)	102(14)	C(22)	1056(16)	- 3091(24)	2609(16)
C(4)	2891(19)	2843(29)	679(14)	C(23)	671(15)	- 3196(24)	1832(15)
C(5)	1619(18)	3241(23)	1720(13)	C(24)	364(13)	-1949(22)	1569(14)
C(6)	2090(15)	807(22)	3067(12)				

* 8. Crystal data: $C_{23}H_{19}FeMo_2O_8P$, M = 702.1, monoclinic, space group C2/c, a 32.432(2), b 9.850(1), c 16.174(1) Å, β 106.30(1)°, U 4959.3 Å, Z = 8, D_c 1.88 g cm⁻¹, monochromated Mo- K_{α} radiation, λ 0.71069 Å, μ 16.6 cm⁻¹.

A crystal ca. $0.15 \times 0.1 \times 0.08$ mm was mounted on an Enraf-Nonius CAD4 diffractometer. Intensities for $-h - k \pm l$ reflections with $2 < \theta < 25^{\circ}$ were measured by an $\omega - 2\theta$ scan with a maximum scan time of 1 minute. No correction was made for absorption. Out of 4931 measured, 3232 unique reflections with $|F^2| > \sigma(F^2)$ were used in the refinement, where $\sigma(F^2) = \{\sigma^2(I) - (0.04I)^2\}^{1/2}/LP$.

The structure was solved by routine heavy atom methods and refined by full matrix least squares with anisotropic temperature factors. Hydrogen atoms were located on a difference map and refined with isotropic temperature factors. The final residuals were R = 0.034, R' = 0.040 with a weighting scheme of $w = 1/\sigma^2(F)$. All calculations were carried out on a PDP 11/34 computer using the Enraf-Nonius SDP-Plus program package.

Tac	ne 4											
Inti	ame	olecular	distances	(Å) an	d angles (°) with	estimated	standard	deviations	in par	entheses i	for 9
	T 2											

(a) Bonds	arrowning gegeller in congrege aggestifter on a congrege (Ne Academic on gegelletting and gegelletting aggestift		"hathanna a ngag bhi dh' annanggag AMP ar an gag agad didda. San yag ga il dan a san gag g ai l dan a san gag g
W - P	2.539(3)	W-C(1)	1.90(2)
W-C(2)	2.038(12)	W-C(3)	1.91(2)
W-C(4)	1.95(2)	W-C(5)	2.035(14)
Mo(1)P	2.388(3)	Mo(1)-C(8)	2.02(2)
Mo(1)–C(9)	2.01(2)	Mo(1) - C(10)	2.325(11)
Mo(2)-P	2.484(3)	Mo(2)–C(6)	1.958(13)
Mo(2)C(7)	1.943(15)	Mo(2)~C(10)	2.235(10)
Mo(1)–Cen2	2.01	Mo(2)-Cen1	2.01
P-C(10)	1.733(12)	O(1) - C(1)	1.23(2)
O(2) - C(2)	1.126(13)	O(3)-C(3)	1.26(2)
O(4)-C(4)	1.22(2)	O(5)-C(5)	1.135(14)
O(6)–C(6)	1.116(13)	O(7)-C(7)	1.164(14)
O(8)-C(8)	1.134(14)	O(9)-C(9)	1.134(15)
C(10) - C(11)	1.53(2)	C(11) - C(12)	1.52(2)
C(11) - C(13)	1.51(2)	C(11)-C(14)	1.58(2)
C(15)-C(16)	1.39(2)	C(15-C(19)	1.37(2)
C(16) - C(17)	1.37(2)	C(17) - C(18)	1,39(2)
C(18)-C(19)	1.42(2)	C(20)-C(21)	1.32(2)
C(20)-C(24)	1.38(2)	C(21)-C(22)	1.45(2)
C(22) - C(23)	1.39(2)	C(23)–C(24)	1.42(2)
(b) Angles			
P = W = C(1)	88 5(4)	P = W = C(2)	90 7(3)
P = W = C(3)	175 6(4)	P-W-C(4)	89.0(4)
P = W = C(5)	88 7(4)	C(1) = W = C(2)	91.4(7)
C(1) = W = C(3)	87.0(6)	C(1) = W - C(4)	177.4(6)
C(1) = W = C(5)	89.9(7)	C(2) = W = C(3)	89.8(5)
C(2) = W - C(4)	87.7(6)	C(2) = W = C(3)	178.6(6)
C(2) = W = C(4)	95 4(6)	C(2) = W = C(5)	013 Q(5)
C(4) = W - C(5)	90.9(7)	$\frac{P}{P} = M_{0}(1) - C(8)$	88 3(4)
$P_{-}Mo(1) = C(9)$	122 4(4)	P = Mo(1) = C(10)	43.1733
$C(8) = M_0(1) = C(9)$	89.7(5)	C(8) = Mo(1) = C(10)	81 4(4)
C(9) = Mo(1) = C(10)	79.7(5)	$P = M_0(7) = C(6)$	75.8743
$P_{-Mo(2)} = C(7)$	77.7(3)	P = Mo(2) = C(10)	A 2 7(3)
$C(6) = M_0(2) = C(7)$	84 7(5)	C(6) = Mo(2) + C(10)	1176(5)
C(7) = Mo(2) = C(10)	90.2(5)	$W_{-}P_{-}M_{0}(1)$	140.5(1)
Cen7=Mo(1)=P	120.4	$Cen^2 = Mo(1) = C(8)$	110.9
Cen2 = Mo(1) = C(9)	1141	Cenl=Mo(2) - P	164.7
Cen1=Mo(2)=C(6)	116.3	Cenl: $Mo(2) = C(7)$	117 7
Cen1=Mo(2)=C(0)	122.9	Cen2: Mo(2)=C(1)	14.5
$W_{-}P_{-}M_{0}(2) = C(10)^{-1}$	138 9(1)	$\mathbf{W} = \mathbf{P} = C(10)$	130 7(A)
$M_0(1) = M_0(2)$	75.01(9)	$M_{O}(1) = P_{O}(10)$	66 5(4)
$M_0(2) = P_{}C(10)$	(5.01(7))	$W_{C(1)} = C(10)$	173(2)
$P_{-}C(10) = C(10)$	131.7(9)	C(10) = C(11) = C(12)	172(27
C(10) = C(11) = C(12)	111/1)	C(10) = C(11) = C(12)	110(1)
C(12) = C(11) = C(13)	109(1)	C(10) - C(11) - C(14) C(12) - C(11) - C(14)	108(1)
C(13-C(11)-C(13))	107(1)	C(14) = C(14) C(16) = C(15) = C(10)	108(1)
C(15) = C(14)	109(1)	C(10) - C(10) - C(19)	100(1) 100(1)
C(17) = C(10) - C(17) C(17) = C(18) = C(10)	107(1)	C(15) = C(19) = C(18)	106(1)
C(21) = C(20) = C(13)	114(1)	C(20) = C(21) = C(20)	106(1)
C(21) = C(20) = C(24)	107(1)	C(20) - C(21) - C(22) C(22) - C(23) - C(24)	100(1)
C(20) = C(24) = C(23)	104(1)	< (44)=<(4)=<(4)=<(4)+	102017
	5 ST 1 5 7		

Cen1 and Cen2 are the centroids of the cyclopentadiene rings C(15)-C(19) and C(20)-C(24) respectively.

344

Selected bond length data (Å) for complexes 7-12

	7 ^a	8 ^b	9 °	10 ^d	11 ^e	12 ^f
P-C	1.719(3)	1.719(5)	1.733(12)	1.86(1)	-	_
Mo(1)-P	2.497(1)	2.385(1)	2.388(3)	2.397(3)	2.552(1)	-
Mo(2)–P	2.442(1)	2.479(1)	2.484(3)	2.514(3)	2.463(1)	
Mo(1)-C	2.224(4)	2.322(4)	2.325(11)	2.36(2)	-	$ \begin{pmatrix} 2.190(3) \\ 2.172(3) \end{pmatrix}^{g} \begin{pmatrix} 2.251(6) \\ 2.188(6) \end{pmatrix}^{h} \begin{pmatrix} 2.203(4) \\ 2.192(4) \end{pmatrix}^{i} $
Mo(2)-C	2.222(4)	2.206(5)	2.335(10)	2.33(1)	-	$ \begin{pmatrix} 2.122(3) & g \\ 2.203(3) & 2.219(6) \end{pmatrix}^{h} \begin{pmatrix} 2.148(4) & i \\ 2.148(4) & 2.148(4) \end{pmatrix}^{i} $
Mo(1)- Mo(2)	3.014(1)	2.981(1)	2.968(3)	2.949(3)	3.022(1)	$\begin{cases} 2.980(3) \ {}^{8} \\ 2.977(1) \ {}^{h} \\ 2.956(1) \ {}^{\prime} \end{cases}$

^a Ref. 16. ^b This work. ^c This work. ^d Ref. 19. ^e Ref. 20. ^f Ref. 22. ^s C₂H₂ complex. ^h C₂Et₂ complex. ⁱ C₂Ph₂ complex.

C₂₃H₁₉FeMo₂O₈P calcd.: C, 39.82; H, 2.70%. IR ν (CO)(Nujol): 1910m, 1930s, 1955m(br), 1980sh, 2030m, cm⁻¹, ¹H NMR(CDCl₃): δ 1.26 (s, 9H, Bu^t), 5.26 (s, 10H, 2C₅H₅) ppm. ³¹P{¹H} NMR(toluene): δ(P) – 189.4 ppm.

Preparation of $[Mo_2(CO)_4(\eta^5 - C_5H_5)_2(Bu^tCP)W(CO)_5]$ (9)

A solution of $[Mo_2(CO)_4(\eta^5 - C_5H_5)_2(Bu^tCP)]$ (7) (0.54 g, 1 mmol) in THF (10 cm³) was treated with a freshly prepared solution of $[W(CO)_5THF]$ (1 mmol) in THF (30 cm³) and the mixture was stirred for 24 h. The volatile components were removed in vacuo and the residue was recrystallised from toluene at $-40 \degree C$ to yield deep red crystals of $[Mo_2(CO)_4(\eta^5 - C_5H_5)_2(Bu^tCP)W(CO)_5]$ (9) * (0.73 g, 85%). Found: C, 33.86; H. 2.20. $C_{24}H_{19}Mo_2O_9PW$ calcd.: C, 33.56; H, 2.21%. IR $\nu(CO)(thf)$: 2075w, 1990sh, 1972s, 1940s, 1920m cm⁻¹. ³¹P{¹H}NMR(toluene) $\delta(P)$: – 269.2 ppm, ¹J(PW) 229 Hz. ¹H NMR(CDCl₃): δ 1.27 (s, 9H, Bu¹); 5.2 (s, 10H, 2C₅H₅) ppm.

Acknowledgement

We thank the SERC for continuing support for this work.

References

1 O.J. Scherer, Angew. Chem. Int. Ed. Engl., 24 (1985) 924.

² E.A. Ishmaeva and I.I. Patsanovskii, Russ. Chem. Rev., 54 (1985) 243.

^{* 9.} Crystal data: C₂₄H₁₉Mo₂O₉PW, M = 858.1, monoclinic, a 15.409(2), b 10.243(2), c 17.154(4) Å, β 97.15(2)°. U 2686.4 Å³, Z = 4, $D_c = 2.12$ g cm⁻³, monochromated Mo- K_{α} radiation, λ 0.71069 Å, μ 55.14 cm⁻¹.

Details of the data collection and structure solution were as for 8 except for the following. The crystal was ca. $0.4 \times 0.2 \times 0.05$ mm sealed in a Lindemann capillary under argon. Intensities were measured for $2 < \theta < 20^{\circ}$, and 2163 reflections with $|F^2| > \sigma(F^2)$ were used in the refinement. An empirical absorption correction was made based on ψ scan measurements. Hydrogen atoms were fixed at calculated positions with B_{iso} of 6.0 Å. Final residuals were R = 0.063, R' = 0.082.

- 3 C.A. Akpan, M.F. Meidine, J.F. Nixon, M. Yoshifuji, K. Toyota, and N. Inamoto, J. Chem. Soc. Chem. Commun., (1985) 946.
- 4 H.H. Karsch, H.V. Reisacher, B. Huber, G. Müller, W. Malisch, and K. Jörg, Angew. Chem. Int. Ed. Engl., 25 (1986) 455.
- 5 M. Yoshifuji, K. Shibayama, T. Hashida, K. Toyota, T. Niitsu, I. Matsuda, T. Sato and N. Inamoto, J. Organomet, Chem., 311 (1986) C63.
- 6 B. Deschamps and F. Mathey, J. Chem. Soc. Chem. Commun., (1985) 1010.
- 7 S.I. Al-Resayes, P.B. Hitchcock and J.F. Nixon, J. Chem. Soc. Chem. Commun., (1987) 928.
- 8 J.C.T.R. Burckett-St. Laurent, P.B. Hitchcock, H.W. Kroto, and J.F. Nixon, J. Chem. Soc. Chem. Commun., (1981) 1141.
- 9 S.I. Al-Resayes, P.B. Hitchcock, M.F. Meidine, and J.F. Nixon, J. Chem. Soc. Chem. Commun., (1984) 1080.
- 10 R. Bartsch, J.F. Nixon, and N. Sarjudeen, J. Organomet. Chem., 294 (1985) 267.
- 11 M.F. Meidine, C.J. Meir, S. Morton, and J.F. Nixon, J. Organomet. Chem., 297 (1985) 255.
- 12 P.B. Hitchcock, M.J. Maah, and J.F. Nixon, J. Chem. Soc., Chem. Commun. (1986) 737: P. Binger, R. Milczarek, R. Mynott, M. Regitz, and W. Rösch, Angew. Chem. Int. Ed. Engl., 25 (1986) 644.
- 13 M.F. Meidine, J.F. Nixon, and R. Mathieu, J. Organomet. Chem., 314 (1986) 307.
- 14 M. Mlekuz, P. Bougeard, B.J. Sayer, S. Peng, M.J. McGlinchey, A. Marinetti, J.-Y. Saillard, J.B. Naceur, B. Mentzen, and G. Jaouen, Organometallics, 4 (1985) 1123.
- 15 R. Hoffmann, Angew. Chem. Int. Ed. Engl., 10 (1982) 711.
- 16 G. Becker, W.A. Herrmann, W. Kalcher, G.W. Kriechbaum, C. Pahl, C.T. Wagner, and M.L. Ziegler, Angew. Chem. Int. Ed. Engl., 22 (1983) 413.
- 17 R. Bartsch, M.F. Meidine, and J.F. Nixon, unpublished.
- 18 J.C.T.R. Burckett-St. Laurent, P.B. Hitchcock, H.W. Kroto, M.F. Meidine, and J.F. Nixon, J. Organomet. Chem., 288 (1982) C82.
- 19 R. Bartsch, P.B. Hitchcock, M.F. Meidine, and J.F. Nixon, J. Organomet. Chem., 266 (1984) C41.
- 20 O.J. Scherer, H. Sitzmann and G. Wolmershäuser, J. Organomet. Chem., 268 (1984) C9.
- 21 S.A.R. Knox, R.F.D. Stansfield, F.G.A. Stone, M.J. Winter and P. Woodward, J. Chem. Soc. Chem. Commun., (1978) 221.
- 22 W.I. Bailey, M.H. Chisholm, F.A. Cotton and L.A. Rankel, J. Am. Chem. Soc., 100 (1978) 5764.
- 23 R.D. Adams, D.M. Collins, and F.A. Cotton. Inorg. Chem., 13 (1974) 1086.
- 24 J.F. Nixon and A. Pidcock, Ann. Rev. NMR Spec., 2 (1969) 345.
- 25 D. Seyferth, J.S. Merola, and R.S. Henderson, Organometallics, 1 (1982) 859.